Network Optimized Storage in Leadership Computing Environments

Rockville, MD
February 16th, 2011
Galen M. Shipman
Oak Ridge National Laboratory

World Class Facilities -Unique Data Management Requirements

OLCF facing exponential data growth

Driven by Simulation Platforms

16 PB and growing at more than 30 TB per day.

Bursty Data Generation Drives I/O Requirements

 Simulation platform performance cannot be bottlenecked by I/O performance

Exabyte data in 2018 - ORNL, NERSC, LLNL, LANL

Today we have disparate islands

- Islands formed around data generators
 - Compute platforms
 - Scientific instruments
- The islands are very far apart
 - Data movement between sites is still a challenge
 - Users may see 200 MB/sec (~15% utilization)
 - Many report 10's of MB/sec
- The islands are getting big (at least the OLCF is)
 - Exponential growth in both archive and on-line storage
 - 16.7 Petabytes (24.2 Million files) in HPSS Archival
 - 4.43 Petabytes (297.4 Million files) in Lustre on-line storage
- The islands are littered with small data
 - Average file size on spinning disk is 14.8 Megabytes
 - Bulk data movement will be limited by Metadata performance

Current Solutions Are Not Adequate

- Storage systems are optimized for simulation platform, not WAN access
- **Dedicated data transfer** nodes alone won't be sufficient
- **Optimization at each level** of the system software stack is required
 - WAN/LAN/SAN
 - Data transfer software
 - Storage software
 - Storage hardware
- Commercial solutions are lacking

Exascale Systems Will Bring New Challenges

Computational performance (FLOPS) targeted to increase by ~1000x in the next 8 years

Persistent storage performance targeted to increase by ~250x, Capacity increased by ~100x

- Key challenges in power and the ability to leverage dramatic increases in total concurrency
- Exascale initiative will drive much of the advances in system architecture and programming environment to address these
- Projected performance improvements pace the rate of improvements delivered over the past 5 years
- Key challenges in bandwidth scaling beyond just component count increases

Unfortunately, the world won't get smaller

- Islands will grow to continents
 - ¼ Exabyte in 2015
 - over 2 Exabytes in 2018
 - Ariel density gains in magnetic media will help perpetuate this
- Connectivity improvements are one part of the solution
 - Will require aggressive deployment of 100Gb (ANI)
 - Terabit capable connectivity will need to be accelerated
- Bandwidth utilization will be key component of success
 - End-to-end optimization for data movement
 - Biggest potential gain for end users

An End-to-End Testbed Environment

- Multi-lab effort spanning ESNet
- End-to-end testbed for research, development, QA
 - Leverage next-gen technologies
 - Allow aggressive transition to Terabit connectivity End-to-End
- Integrated R&D
 - Middleware development
 - Networking stacks
 - Parallel file system
 - Archival storage

- Specifically targeted to meet the needs of current and future DOE signature facilities
 - Exascale simulation platforms
 - Instruments

Advanced technologies coupled with integrated development

- System software
 - Operating System
 - File System
 - Networking Stack
- Middleware technologies
 - Bulk data movers
 - Data management tools
 - Remote analysis
 - Subsetting
- Advanced HW technologies
 - SOC
 - CMOS Photonics
 - Interconnect (LAN, SAN, WAN)
 - NVRAM
 - Flash
 - PCM
 - Racetrack

